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Problem 3.1

(a) Show that the set of all square-integrable functions is a vector space (refer to Section A.1
for the definition). Hint: The main point is to show that the sum of two square-integrable
functions is itself square-integrable. Use Equation 3.7. Is the set of all normalized functions
a vector space?

(b) Show that the integral in Equation 3.6 satisfies the conditions for an inner product (Section
A.2).

Solution

In order for a collection of vectors V to be a vector space over the complex numbers C, the vector
addition and scalar multiplication operations defined on it must satisfy the following ten
properties.

(A1) x+ y ∈ V for all x,y ∈ V.

(A2) (x+ y) + z = x+ (y + z) for every x,y, z ∈ V.

(A3) x+ y = y + x for every x,y ∈ V.

(A4) There is an element 0 ∈ V such that x+ 0 = x for every x ∈ V.

(A5) For each x ∈ V, there is an element (−x) ∈ V such that x+ (−x) = 0.

(M1) αx ∈ V for all α ∈ C and x ∈ V.

(M2) (αβ)x = α(βx) for all α, β ∈ C and every x ∈ V.

(M3) α(x+ y) = αx+ αy for every α ∈ C and all x,y ∈ V.

(M4) (α+ β)x = αx+ βx for all α, β ∈ C and every x ∈ V.

(M5) 1x = x for every x ∈ V.

Part (a)

Let V be the set of all square-integrable functions. Suppose that f(x), g(x), and h(x) are
functions in V and that α and β are complex scalars.

� b

a
|f(x)|2 dx = ⟨f | f⟩ = C1 < ∞

� b

a
|g(x)|2 dx = ⟨g | g⟩ = C2 < ∞

� b

a
|h(x)|2 dx = ⟨h |h⟩ = C3 < ∞

C1, C2, and C3 are real nonnegative constants.
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Property A1

Check to see if the sum of f(x) and g(x) is also in V.
� b

a
|f(x) + g(x)|2 dx =

� b

a
[f(x) + g(x)]∗[f(x) + g(x)] dx

=

� b

a
[f∗(x) + g∗(x)][f(x) + g(x)] dx

=

� b

a
[f∗(x)f(x) + f∗(x)g(x) + g∗(x)f(x) + g∗(x)g(x)] dx

=

� b

a
f∗(x)f(x) dx+

� b

a
f∗(x)g(x) dx+

� b

a
g∗(x)f(x) dx+

� b

a
g∗(x)g(x) dx

= ⟨f | f⟩+ ⟨f | g⟩+ ⟨g | f⟩+ ⟨g | g⟩

= ⟨f | f⟩+ ⟨f | g⟩+ ⟨f | g⟩∗ + ⟨g | g⟩

= ⟨f | f⟩+ 2Re ⟨f | g⟩+ ⟨g | g⟩

Consider the modulus of both sides.∣∣∣∣� b

a
|f(x) + g(x)|2 dx

∣∣∣∣ = |⟨f | f⟩+ 2Re ⟨f | g⟩+ ⟨g | g⟩|

Use the triangle inequality.∣∣∣∣� b

a
|f(x) + g(x)|2 dx

∣∣∣∣ ≤ |⟨f | f⟩|+ |2Re ⟨f | g⟩|+ |⟨g | g⟩|

= |⟨f | f⟩|+ 2 |Re ⟨f | g⟩|+ |⟨g | g⟩|

≤ |⟨f | f⟩|+ 2 |⟨f | g⟩|+ |⟨g | g⟩|

= |⟨f | f⟩|+ 2

∣∣∣∣� b

a
f∗(x)g(x) dx

∣∣∣∣+ |⟨g | g⟩|

Use the Schwarz inequality (Equation 3.7 on page 93 or Equation A.27 on page 467).∣∣∣∣� b

a
|f(x) + g(x)|2 dx

∣∣∣∣ ≤ |⟨f | f⟩|+ 2

√� b

a
|f(x)|2 dx

� b

a
|g(x)|2 dx+ |⟨g | g⟩|

= |⟨f | f⟩|+ 2
√
⟨f | f⟩⟨g | g⟩+ |⟨g | g⟩|

= |C1|+ 2
√
(C1)(C2) + |C2|

= C1 + 2
√
C1C2 + C2

< ∞

Property A1 is satisfied.
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Property A2

The associative law of addition holds for complex numbers, so

[f(x) + g(x)] + h(x) = f(x) + [g(x) + h(x)].

Property A2 is satisfied.

Property A3

The commutative law of addition holds for complex numbers, so

f(x) + g(x) = g(x) + f(x).

Property A3 is satisfied.

Property A4

There is in fact a zero function in V because

� b

a
|0|2 dx = ⟨0 | 0⟩ = 0 < ∞.

Adding 0 to any function in V, say f(x), results in that same function: f(x) + 0 = f(x).
Property A4 is satisfied.

Property A5

For any function in V, say f(x), there exists an additive inverse, −f(x), because

� b

a
|−f(x)|2 dx =

� b

a
|f(x)|2 dx = ⟨f | f⟩ = C1 < ∞.

Adding any function with its additive inverse yields the zero function: f(x) + [−f(x)] = 0.
Property A5 is satisfied.

Property M1

αf(x) is also a function in V because

� b

a
|αf(x)|2 dx =

� b

a
|α|2|f(x)|2 dx = |α|2

� b

a
|f(x)|2 dx = |α|2⟨f | f⟩ = |α|2C1 < ∞.

Property M1 is satisfied.

Property M2

The associative law of multiplication holds for complex numbers, so property M2 is satisfied.

(αβ)f(x) = α[βf(x)].

www.stemjock.com



Griffiths Quantum Mechanics 3e: Problem 3.1 Page 4 of 7

Property M3

The distributive law holds for complex numbers, so

α[f(x) + g(x)] = αf(x) + αg(x).

Property M3 is satisfied.

Property M4

The distributive law holds for complex numbers, so

(α+ β)f(x) = αf(x) + βf(x).

Property M4 is satisfied.

Property M5

1 is known as the multiplicative identity because

1f(x) = 1 · f(x) = f(x).

Property M5 is satisfied. All ten properties are satisfied, so the set of all square-integrable
functions is a vector space over the complex numbers. The set of all normalized functions is not a
vector space because it does not include the zero function:

� b

a
|0|2 dx = ⟨0 | 0⟩ = 0 ̸= 1.

Part (b)

Equation A.19, Equation A.20, and Equation A.21 on page 467 are the conditions that an inner
product has to satisfy.

⟨β |α⟩ = ⟨α |β⟩∗ (A.19)

⟨α |α⟩ ≥ 0, and ⟨α |α⟩ = 0 ⇔ |α⟩ = |0⟩ (A.20)

⟨α| (b |β⟩+ c |γ⟩) = b ⟨α |β⟩+ c ⟨α | γ⟩ (A.21)

The integral under consideration here is in Equation 3.6.

⟨f | g⟩ =
� b

a
f∗(x)g(x) dx (3.6)

Note that f∗(x)g(x) is a complex-valued function and can be written as u(x) + iv(x), where u(x)
and v(x) are real-valued functions, since x is real.
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Start by showing that Equation A.19 is true.

⟨f | g⟩∗ =
[� b

a
f∗(x)g(x) dx

]∗

=

{� b

a
[u(x) + iv(x)] dx

}∗

=

[� b

a
u(x) dx+ i

� b

a
v(x) dx

]∗

=

� b

a
u(x) dx− i

� b

a
v(x) dx

=

� b

a
[u(x)− iv(x)] dx

=

� b

a
[u(x) + iv(x)]∗ dx

=

� b

a
[f∗(x)g(x)]∗ dx

=

� b

a
f(x)g∗(x) dx

=

� b

a
g∗(x)f(x) dx

= ⟨g | f⟩

Now show that Equation A.20 is true. f(x) is a complex-valued function, so it can be written as
U(x) + iV (x), where U(x) and V (x) are real-valued functions, since x is real.

⟨f | f⟩ =
� b

a
f∗(x)f(x) dx

=

� b

a
[U(x) + iV (x)]∗[U(x) + iV (x)] dx

=

� b

a
[U(x)− iV (x)][U(x) + iV (x)] dx

=

� b

a
{[U(x)]2 + [V (x)]2} dx (1)

Since U(x) and V (x) are real, the integrand is nonnegative, meaning the integral is nonnegative
too.

⟨f | f⟩ ≥ 0

If f(x) = 0, then

⟨f | f⟩ =
� b

a
(0)∗(0) dx = 0.
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The aim now is to show that if

⟨f | f⟩ =
� b

a
f∗(x)f(x) dx =

� b

a
|f(x)|2 dx = 0,

then |f(x)|2 = 0. Let F (x) = |f(x)|2 and assume that

� b

a
F (x) dx = 0 (2)

is true. As indicated by equation (1), F (x) is a real and nonnegative function. Assume further
that F (x) is a continuous function on a ≤ x ≤ b. By the extreme value theorem, then, F (x)
attains an absolute maximum somewhere in this interval, say at x = c. Suppose this maximum is
positive:

F (c) > 0, a ≤ c ≤ b.

Because of the continuity, for every ε > 0 there exists a δ > 0 such that

|x− c| < δ implies |F (x)− F (c)| < ε.

For ε = 1
2F (c) in particular, this result becomes

|x− c| < δ implies |F (x)− F (c)| < 1

2
F (c)

−δ < x− c < δ implies F (c)− F (x) <
1

2
F (c)

c− δ < x < c+ δ implies F (x) >
1

2
F (c).

Now consider the integral of F (x) from a to b.

� b

a
F (x) dx ≥

� c+δ

c−δ
F (x) dx >

� c+δ

c−δ

1

2
F (c) dx =

1

2
F (c)

� c+δ

c−δ
dx =

1

2
F (c)(2δ) = F (c)δ > 0

This contradicts equation (2), so the assumption that F (c) is positive is false; it must be zero
then. If the maximum of a continuous nonnegative function is zero, this function is zero for all x:
F (x) = 0 for a ≤ x ≤ b.

|f(x)|2 = 0

Solving this equation for f(x) yields
f(x) = 0.

There’s a problem with this argument if a or b are infinite because the extreme value theorem
doesn’t guarantee a maximum for F (x) on an open interval, such as −∞ < x < ∞. By assuming
even further that F (x) → 0 as x → ±∞, though, this interval can be made finite and closed
(−d ≤ x ≤ d, where d is large enough that F (x) decreases monotonically to zero outside this
interval), and the argument above applies. Therefore,

⟨f | f⟩ = 0 ⇔ f(x) = 0.
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Finally, show that Equation A.21 is true. Let α and β be complex constants.

⟨f | (α |g⟩+ β |h⟩) =
� b

a
f∗(x)[αg(x) + βh(x)] dx

=

� b

a
[αf∗(x)g(x) + βf∗(x)h(x)] dx

=

� b

a
αf∗(x)g(x) dx+

� b

a
βf∗(x)h(x) dx

= α

� b

a
f∗(x)g(x) dx+ β

� b

a
f∗(x)h(x) dx

= α ⟨f | g⟩+ β ⟨f |h⟩
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