Problem 3.1

(a) Show that the set of all square-integrable functions is a vector space (refer to Section A. 1 for the definition). Hint: The main point is to show that the sum of two square-integrable functions is itself square-integrable. Use Equation 3.7. Is the set of all normalized functions a vector space?
(b) Show that the integral in Equation 3.6 satisfies the conditions for an inner product (Section A.2).

Solution

In order for a collection of vectors \mathcal{V} to be a vector space over the complex numbers \mathbb{C}, the vector addition and scalar multiplication operations defined on it must satisfy the following ten properties.
(A1) $\mathbf{x}+\mathbf{y} \in \mathcal{V}$ for all $\mathbf{x}, \mathbf{y} \in \mathcal{V}$.
(A2) $(\mathbf{x}+\mathbf{y})+\mathbf{z}=\mathbf{x}+(\mathbf{y}+\mathbf{z})$ for every $\mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathcal{V}$.
(A3) $\mathbf{x}+\mathbf{y}=\mathbf{y}+\mathbf{x}$ for every $\mathbf{x}, \mathbf{y} \in \mathcal{V}$.
(A4) There is an element $\mathbf{0} \in \mathcal{V}$ such that $\mathbf{x}+\mathbf{0}=\mathbf{x}$ for every $\mathbf{x} \in \mathcal{V}$.
(A5) For each $\mathbf{x} \in \mathcal{V}$, there is an element $(-\mathbf{x}) \in \mathcal{V}$ such that $\mathbf{x}+(-\mathbf{x})=\mathbf{0}$.
(M1) $\alpha \mathbf{x} \in \mathcal{V}$ for all $\alpha \in \mathbb{C}$ and $\mathbf{x} \in \mathcal{V}$.
(M2) $(\alpha \beta) \mathbf{x}=\alpha(\beta \mathbf{x})$ for all $\alpha, \beta \in \mathbb{C}$ and every $\mathbf{x} \in \mathcal{V}$.
(M3) $\alpha(\mathbf{x}+\mathbf{y})=\alpha \mathbf{x}+\alpha \mathbf{y}$ for every $\alpha \in \mathbb{C}$ and all $\mathbf{x}, \mathbf{y} \in \mathcal{V}$.
(M4) $(\alpha+\beta) \mathbf{x}=\alpha \mathbf{x}+\beta \mathbf{x}$ for all $\alpha, \beta \in \mathbb{C}$ and every $\mathbf{x} \in \mathcal{V}$.
(M5) $1 \mathrm{x}=\mathrm{x}$ for every $\mathrm{x} \in \mathcal{V}$.

Part (a)

Let \mathcal{V} be the set of all square-integrable functions. Suppose that $f(x), g(x)$, and $h(x)$ are functions in \mathcal{V} and that α and β are complex scalars.

$$
\begin{aligned}
& \int_{a}^{b}|f(x)|^{2} d x=\langle f \mid f\rangle=C_{1}<\infty \\
& \int_{a}^{b}|g(x)|^{2} d x=\langle g \mid g\rangle=C_{2}<\infty \\
& \int_{a}^{b}|h(x)|^{2} d x=\langle h \mid h\rangle=C_{3}<\infty
\end{aligned}
$$

C_{1}, C_{2}, and C_{3} are real nonnegative constants.

Property A1

Check to see if the sum of $f(x)$ and $g(x)$ is also in \mathcal{V}.

$$
\begin{aligned}
\int_{a}^{b}|f(x)+g(x)|^{2} d x & =\int_{a}^{b}[f(x)+g(x)]^{*}[f(x)+g(x)] d x \\
& =\int_{a}^{b}\left[f^{*}(x)+g^{*}(x)\right][f(x)+g(x)] d x \\
& =\int_{a}^{b}\left[f^{*}(x) f(x)+f^{*}(x) g(x)+g^{*}(x) f(x)+g^{*}(x) g(x)\right] d x \\
& =\int_{a}^{b} f^{*}(x) f(x) d x+\int_{a}^{b} f^{*}(x) g(x) d x+\int_{a}^{b} g^{*}(x) f(x) d x+\int_{a}^{b} g^{*}(x) g(x) d x \\
& =\langle f \mid f\rangle+\langle f \mid g\rangle+\langle g \mid f\rangle+\langle g \mid g\rangle \\
& =\langle f \mid f\rangle+\langle f \mid g\rangle+\langle f \mid g\rangle^{*}+\langle g \mid g\rangle \\
& =\langle f \mid f\rangle+2 \operatorname{Re}\langle f \mid g\rangle+\langle g \mid g\rangle
\end{aligned}
$$

Consider the modulus of both sides.

$$
\left|\int_{a}^{b}\right| f(x)+\left.g(x)\right|^{2} d x|=|\langle f \mid f\rangle+2 \operatorname{Re}\langle f \mid g\rangle+\langle g \mid g\rangle|
$$

Use the triangle inequality.

$$
\begin{aligned}
& \left|\int_{a}^{b}\right| f(x)+\left.g(x)\right|^{2} d x|\leq|\langle f \mid f\rangle|+|2 \operatorname{Re}\langle f \mid g\rangle|+|\langle g \mid g\rangle| \\
& =|\langle f \mid f\rangle|+2|\operatorname{Re}\langle f \mid g\rangle|+|\langle g \mid g\rangle| \\
& \leq|\langle f \mid f\rangle|+2|\langle f \mid g\rangle|+|\langle g \mid g\rangle| \\
& \quad=|\langle f \mid f\rangle|+2\left|\int_{a}^{b} f^{*}(x) g(x) d x\right|+|\langle g \mid g\rangle|
\end{aligned}
$$

Use the Schwarz inequality (Equation 3.7 on page 93 or Equation A. 27 on page 467).

$$
\begin{aligned}
\left|\int_{a}^{b}\right| f(x)+\left.g(x)\right|^{2} d x|\leq|\langle f & |f\rangle\left|+2 \sqrt{\int_{a}^{b}|f(x)|^{2} d x \int_{a}^{b}|g(x)|^{2} d x}+|\langle g \mid g\rangle|\right. \\
& =|\langle f \mid f\rangle|+2 \sqrt{\langle f \mid f\rangle\langle g \mid g\rangle}+|\langle g \mid g\rangle| \\
& =\left|C_{1}\right|+2 \sqrt{\left(C_{1}\right)\left(C_{2}\right)}+\left|C_{2}\right| \\
& =C_{1}+2 \sqrt{C_{1} C_{2}}+C_{2} \\
& <\infty
\end{aligned}
$$

Property A1 is satisfied.

Property A2

The associative law of addition holds for complex numbers, so

$$
[f(x)+g(x)]+h(x)=f(x)+[g(x)+h(x)] .
$$

Property A2 is satisfied.
Property A3
The commutative law of addition holds for complex numbers, so

$$
f(x)+g(x)=g(x)+f(x) .
$$

Property A3 is satisfied.
Property A4
There is in fact a zero function in \mathcal{V} because

$$
\int_{a}^{b}|0|^{2} d x=\langle 0 \mid 0\rangle=0<\infty .
$$

Adding 0 to any function in \mathcal{V}, say $f(x)$, results in that same function: $f(x)+0=f(x)$. Property A4 is satisfied.

Property A5

For any function in \mathcal{V}, say $f(x)$, there exists an additive inverse, $-f(x)$, because

$$
\int_{a}^{b}|-f(x)|^{2} d x=\int_{a}^{b}|f(x)|^{2} d x=\langle f \mid f\rangle=C_{1}<\infty .
$$

Adding any function with its additive inverse yields the zero function: $f(x)+[-f(x)]=0$. Property A5 is satisfied.

Property M1

$\alpha f(x)$ is also a function in \mathcal{V} because

$$
\int_{a}^{b}|\alpha f(x)|^{2} d x=\int_{a}^{b}|\alpha|^{2}|f(x)|^{2} d x=|\alpha|^{2} \int_{a}^{b}|f(x)|^{2} d x=|\alpha|^{2}\langle f \mid f\rangle=|\alpha|^{2} C_{1}<\infty .
$$

Property M1 is satisfied.
Property M2
The associative law of multiplication holds for complex numbers, so property M2 is satisfied.

$$
(\alpha \beta) f(x)=\alpha[\beta f(x)] .
$$

Property M3

The distributive law holds for complex numbers, so

$$
\alpha[f(x)+g(x)]=\alpha f(x)+\alpha g(x) .
$$

Property M3 is satisfied.
Property M4
The distributive law holds for complex numbers, so

$$
(\alpha+\beta) f(x)=\alpha f(x)+\beta f(x)
$$

Property M4 is satisfied.
Property M5
1 is known as the multiplicative identity because

$$
1 f(x)=1 \cdot f(x)=f(x)
$$

Property M5 is satisfied. All ten properties are satisfied, so the set of all square-integrable functions is a vector space over the complex numbers. The set of all normalized functions is not a vector space because it does not include the zero function:

$$
\int_{a}^{b}|0|^{2} d x=\langle 0 \mid 0\rangle=0 \neq 1 .
$$

Part (b)
Equation A.19, Equation A.20, and Equation A. 21 on page 467 are the conditions that an inner product has to satisfy.

$$
\begin{gather*}
\langle\beta \mid \alpha\rangle=\langle\alpha \mid \beta\rangle^{*} \tag{A.19}\\
\langle\alpha \mid \alpha\rangle \geq 0, \quad \text { and }\langle\alpha \mid \alpha\rangle=0 \Leftrightarrow|\alpha\rangle=|0\rangle \tag{A.20}\\
\langle\alpha|(b|\beta\rangle+c|\gamma\rangle)=b\langle\alpha \mid \beta\rangle+c\langle\alpha \mid \gamma\rangle \tag{A.21}
\end{gather*}
$$

The integral under consideration here is in Equation 3.6.

$$
\begin{equation*}
\langle f \mid g\rangle=\int_{a}^{b} f^{*}(x) g(x) d x \tag{3.6}
\end{equation*}
$$

Note that $f^{*}(x) g(x)$ is a complex-valued function and can be written as $u(x)+i v(x)$, where $u(x)$ and $v(x)$ are real-valued functions, since x is real.

Start by showing that Equation A. 19 is true.

$$
\begin{aligned}
\langle f \mid g\rangle^{*} & =\left[\int_{a}^{b} f^{*}(x) g(x) d x\right]^{*} \\
& =\left\{\int_{a}^{b}[u(x)+i v(x)] d x\right\}^{*} \\
& =\left[\int_{a}^{b} u(x) d x+i \int_{a}^{b} v(x) d x\right]^{*} \\
& =\int_{a}^{b} u(x) d x-i \int_{a}^{b} v(x) d x \\
& =\int_{a}^{b}[u(x)-i v(x)] d x \\
& =\int_{a}^{b}[u(x)+i v(x)]^{*} d x \\
& =\int_{a}^{b}\left[f^{*}(x) g(x)\right]^{*} d x \\
& =\int_{a}^{b} f(x) g^{*}(x) d x \\
& =\int_{a}^{b} g^{*}(x) f(x) d x \\
& =\langle g \mid f\rangle
\end{aligned}
$$

Now show that Equation A. 20 is true. $f(x)$ is a complex-valued function, so it can be written as $U(x)+i V(x)$, where $U(x)$ and $V(x)$ are real-valued functions, since x is real.

$$
\begin{align*}
\langle f \mid f\rangle & =\int_{a}^{b} f^{*}(x) f(x) d x \\
& =\int_{a}^{b}[U(x)+i V(x)]^{*}[U(x)+i V(x)] d x \\
& =\int_{a}^{b}[U(x)-i V(x)][U(x)+i V(x)] d x \\
& =\int_{a}^{b}\left\{[U(x)]^{2}+[V(x)]^{2}\right\} d x \tag{1}
\end{align*}
$$

Since $U(x)$ and $V(x)$ are real, the integrand is nonnegative, meaning the integral is nonnegative too.

$$
\langle f \mid f\rangle \geq 0
$$

If $f(x)=0$, then

$$
\langle f \mid f\rangle=\int_{a}^{b}(0)^{*}(0) d x=0 .
$$

The aim now is to show that if

$$
\langle f \mid f\rangle=\int_{a}^{b} f^{*}(x) f(x) d x=\int_{a}^{b}|f(x)|^{2} d x=0
$$

then $|f(x)|^{2}=0$. Let $F(x)=|f(x)|^{2}$ and assume that

$$
\begin{equation*}
\int_{a}^{b} F(x) d x=0 \tag{2}
\end{equation*}
$$

is true. As indicated by equation (1), $F(x)$ is a real and nonnegative function. Assume further that $F(x)$ is a continuous function on $a \leq x \leq b$. By the extreme value theorem, then, $F(x)$
attains an absolute maximum somewhere in this interval, say at $x=c$. Suppose this maximum is positive:

$$
F(c)>0, \quad a \leq c \leq b .
$$

Because of the continuity, for every $\varepsilon>0$ there exists a $\delta>0$ such that

$$
|x-c|<\delta \quad \text { implies } \quad|F(x)-F(c)|<\varepsilon .
$$

For $\varepsilon=\frac{1}{2} F(c)$ in particular, this result becomes

$$
\begin{aligned}
&|x-c|<\delta \quad \text { implies }|F(x)-F(c)|<\frac{1}{2} F(c) \\
&-\delta<x-c<\delta \quad \text { implies } \quad F(c)-F(x)<\frac{1}{2} F(c) \\
& c-\delta<x<c+\delta \quad \text { implies } \quad F(x)>\frac{1}{2} F(c) .
\end{aligned}
$$

Now consider the integral of $F(x)$ from a to b.

$$
\int_{a}^{b} F(x) d x \geq \int_{c-\delta}^{c+\delta} F(x) d x>\int_{c-\delta}^{c+\delta} \frac{1}{2} F(c) d x=\frac{1}{2} F(c) \int_{c-\delta}^{c+\delta} d x=\frac{1}{2} F(c)(2 \delta)=F(c) \delta>0
$$

This contradicts equation (2), so the assumption that $F(c)$ is positive is false; it must be zero then. If the maximum of a continuous nonnegative function is zero, this function is zero for all x : $F(x)=0$ for $a \leq x \leq b$.

$$
|f(x)|^{2}=0
$$

Solving this equation for $f(x)$ yields

$$
f(x)=0 .
$$

There's a problem with this argument if a or b are infinite because the extreme value theorem doesn't guarantee a maximum for $F(x)$ on an open interval, such as $-\infty<x<\infty$. By assuming even further that $F(x) \rightarrow 0$ as $x \rightarrow \pm \infty$, though, this interval can be made finite and closed $(-d \leq x \leq d$, where d is large enough that $F(x)$ decreases monotonically to zero outside this interval), and the argument above applies. Therefore,

$$
\langle f \mid f\rangle=0 \quad \Leftrightarrow \quad f(x)=0 .
$$

Finally, show that Equation A. 21 is true. Let α and β be complex constants.

$$
\begin{aligned}
\langle f|(\alpha|g\rangle+\beta|h\rangle) & =\int_{a}^{b} f^{*}(x)[\alpha g(x)+\beta h(x)] d x \\
& =\int_{a}^{b}\left[\alpha f^{*}(x) g(x)+\beta f^{*}(x) h(x)\right] d x \\
& =\int_{a}^{b} \alpha f^{*}(x) g(x) d x+\int_{a}^{b} \beta f^{*}(x) h(x) d x \\
& =\alpha \int_{a}^{b} f^{*}(x) g(x) d x+\beta \int_{a}^{b} f^{*}(x) h(x) d x \\
& =\alpha\langle f \mid g\rangle+\beta\langle f \mid h\rangle
\end{aligned}
$$

